\square
VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD
Accredited by NAAC with $A++$ Grade
B.E. (CSE \& AIML) V-Semester Main \& Backlog Examinations, Jan./Feb.-2024

Automata, Languages and Computation
Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20 \mathrm{Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Define Chomsky Hierarchy? List out Chomsky Hierarchy of Formal Languages.	2	1	1	1
2.	Define Deterministic Finite Automata (DFA) and Identify the Language accepted by the given DFA?	2	2	1	2
3.	Define Emptiness problem in regular language? How do you test it?	2	1	2	1
4.	Determine the regular expression corresponding to the Context Free Grammar (CFG): $\mathrm{S} \rightarrow \mathrm{aS}\|\mathrm{bS}\| \mathrm{a} \mid \mathrm{b}$	2	2	2	2
5.	Give the formal definition of Push Down Automata (PDA)? How does it differ from Finite Automata?	2	1	3	1
6.	Convert the following CFG to Chomsky Normal Form (CNF)? $\begin{aligned} & \mathrm{S}->\mathrm{aAB} \\ & \mathrm{~A}->\mathrm{aA} \mid \mathrm{a} \\ & \mathrm{~B}->\mathrm{bB} \mid \mathrm{b} \end{aligned}$	2	2	3	2
7.	Differentiate between Linear Bounded Automata (LBA) and Turing Machine (TM)?	2	1	4	1
8.	Identify the language generated by the following Context Sensitive Language (CSG), where S is the start variable. $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{XY} \\ & \mathrm{X} \rightarrow \mathrm{aX} \mid \mathrm{a} \\ & \mathrm{Y} \rightarrow \mathrm{aYb} \mid \epsilon \end{aligned}$	2	2	4	2
9.	Define Universal Turing Machine (UTM)? How is it differed from Turing Machine?	2	1	5	1

10. Differentiate P, NP, and NP complete problem?

Part-B $(5 \times 8=40$ Marks $)$

11. a) Define formal definition of Finite Automata (FA)? Draw State Transition diagram and find the regular expression for the following State Transition Table?

Present State	Next state for Input 0	Next State of Input 1
$\rightarrow \mathrm{q} 0$	q 0	q 1
q 1	q 2	q 1
${ }^{\text {q } 2}$	q 2	q 2

b) Construct a DFA that recognizes the languages defined over $\sum=\{a, b, c\}$ consisting of all the strings that contain substring "abc".
12. a) Define Pumping Lemma Theorem for Regular Language? Apply it to check whether the following languages are regular or not?
i. $L=\left\{a^{n} b^{n} \mid n>=0\right\}$
ii. $\quad L=\left\{a^{p} \mid p\right.$ is prime $\}$
) Define Ambigous Grammar for regular language? Check whether the following grammar is ambiguous or not for the given string "ibtibtaea".
$\mathrm{S} \rightarrow \mathrm{iCtS}|\mathrm{iCtSeS}| \mathrm{a}$
$\mathrm{C} \rightarrow \mathrm{b}$
13. a) Design a PDA (by default it is non-deterministic) for accepting the language $L=\left\{0^{n} 1^{m} 0^{n} \mid m, n>=1\right\}$, by final state or empty stack or both.
b) List out the steps used to convert from Context Free Grammar (CFG) to Greibach Normal Form (GNF)? Convert following CFG into GNF?
$\mathrm{S} \rightarrow \mathrm{XB} \mid \mathrm{AA}$
$\mathrm{A} \rightarrow \mathrm{a} \mid \mathrm{SA}$
$B \rightarrow b$
$X \rightarrow a$
14. a) Give the formal definition of LBA? Design LBA for CSL $L=\left\{a^{2 n} b^{n} \mid n\right.$ $>0\}$ and check the input string "aaaabb" is accepted by LBA or not?
b) Design a Turing Machine for language $L=\left\{0^{n} 1^{n} \mid n>0\right\}$
15. a) Define Post's correspondence problem (PCP)? How Modified PCP (MPCP) differs from PCP? Determine the solution for the following PCP instance consists of the two pairs? $\mathrm{X}=\{01,1,1\}$ and $\mathrm{Y}=\left\{01^{3}, 10,11\right\}$
b) State and explain Cook's Theorem with suitable example?

2	1	5	1
4	2	1	2

16. a)

Construct DFA from given ε-NFA?

b) What are the possible methods used to minimize DFA? Apply equivalence theorem or partition method to Minimize following DFA?

17. Answer any two of the following:
a) Apply CYK algorithm to check whether the string 'abba' is a member of the language defined by following grammar:
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{a}|\mathrm{AA}| \mathrm{b}$
$B \rightarrow b$
b) Differentiate Multi-track and Multi-tape Turing Machine? Explain how Multi-tape TM converted in to equivalent single-tape TM?
c) Differentiate Disjunctive Normal Form (DNF) and Conjunctive Normal Form (CNF)? Represent function $f(x, y, z)=(\neg x \wedge z) \vee y$ in to DNF and CNF form.

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	20%
ii)	Blooms Taxonomy Level - 2	30%
iii)	Blooms Taxonomy Level - $\& 4$	50%

